$0.50 \times 0.30 \times 0.20 \text{ mm}$

2343 measured reflections

1378 independent reflections

1351 reflections with $I > 2.0\sigma(I)$

T = 190 K

 $R_{\rm int} = 0.010$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

a-D-Tagatopyranose

Francesco Punzo,^a*‡ David J. Watkin^b and George W. J. Fleet^c

^aLAMSUN and CSGI at Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy, ^bUniversity of Oxford, Department of Chemical Crystallography, Chemistry Research Laboratory, Oxford OX1 3TA, England, and ^cUniversity of Oxford, Department of Organic Chemistry, Chemistry Research Laboratory, Oxford OX1 3TA, England Correspondence e-mail: fpunzo@unict.it

Received 7 April 2009; accepted 11 May 2009

Key indicators: single-crystal X-ray study; T = 190 K; mean σ (C–C) = 0.001 Å; R factor = 0.025; wR factor = 0.065; data-to-parameter ratio = 12.5.

The title compound, $C_6H_{12}O_6$, also known as D-Tagatose, occurs in its furanose and pyranose forms in solution, but only the α -pyranose form crystallizes out. In the crystal, the molecules form hydrogen bonded chains propagating in [100] linked by $O-H\cdots O$ interactions. Further $O-H\cdots O$ bonds cross-link the chains.

Related literature

For the D-tagatose market price, syntheses and applications, see: Angyal (1991); Beadle *et al.* (1992); Granstrom *et al.* (2004); Izumori (2002); Skytte (2002); Porwell (2007). For the potential of the title compound as a chiral building block, see: Soengas *et al.* (2005); Jones *et al.* (2007, 2008); Yoshihara *et al.* (2008). For related crystallographic literature, see: Takagi *et al.* (1969); Görbitz (1999); Watkin *et al.* (2005); Kwiecien *et al.* (2008); Larson (1970).

Experimental

Crystal data

b = 6.5022 (1) Å
c = 17.6629 (4) Å
V = 714.36 (2) Å ³
Z = 4

[‡] Visiting Scientist at the Department of Chemical Crystallography Chemical Research Laboratory Mansfield Road Oxford OX1 3TA England.

Mo $K\alpha$ radiation	
$\mu = 0.15 \text{ mm}^{-1}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*DENZO/SCALEPACK*; Otwinowski & Minor, 1997) $T_{\rm min} = 0.96, T_{\rm max} = 0.97$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	110 parameters
$vR(F^2) = 0.065$	H-atom parameters constrained
S = 0.96	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
378 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H41···O10 ⁱ	0.81	2.02	2.8236 (14)	171
O9−H91···O1 ⁱⁱ	0.83	1.90	2.7203 (14)	173
O12−H121···O4 ⁱⁱⁱ	0.83	2.09	2.7875 (14)	142
$O10-H101\cdots O4^{iv}$	0.81	2.10	2.8518 (14)	155
$O1 - H11 \cdots O6^{v}$	0.81	1.96	2.7661 (14)	175
			. 1 (1 (1)

Symmetry codes: (i) x, y + 1, z; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x + 1, y - 1, z; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (v) x - 1, y, z.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

Arla Foods generously provided a sample of D-tagatose, obtained as described (Beadle *et al.*, 1992) from D-galactose, for crystallization.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2248).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Angyal, S. J. (1991). Adv. Carbohydr. Chem. Biochem. 49, 19–35.
- Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). Process for Manufacturing tagatose, US Patent 5 078 796, January 7, 1992.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.
- Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.
- Izumori, K. (2002). Naturwissennshaften, 89, 120-124.
- Jones, N. A., Jenkinson, S. F., Soengas, R., Fanefjord, M., Wormald, M. R., Dwek, R. A., Kiran, G. P., Devendar, R., Takata, G., Morimoto, K., Izumori, K. & Fleet, G. W. J. (2007). *Tetrahedron Asymmetry*, 18, 774–786.
- Jones, N. A., Rao, D., Yoshihara, A., Gullapalli, P., Morimoto, K., Takata, G., Hunter, S. J., Wormald, M. R., Dwek, R. A., Izumori, K. & Fleet, G. W. J. (2008). *Tetrahedron Asymmetry*, **19**, 1904–1918.
- Kwiecien, A., Slepokura, K. & Lis, T. (2008). Carbohydrate Res. 343, 2336– 2339.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Porwell, J. (2007). Aldrich Handbook of Fine Chemicals p. 2253. Milwaukee, WI, USA: Aldrich.
- Skytte, U. P. (2002). Cereal Foods World, 47, 224-227.
- Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). *Tetrahedron Lett.* 46, 5755–5759.
- Takagi, S. & Rosenstein, R. D. (1969). Carbohydrate Res. 11, 156-158.
- Watkin, D. J., Glawar, A. F. G., Soengas, R., Skytte, U. P., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2005). Acta Cryst. E61, o2891–o2893.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, UK.
- Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N. A., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). *Tetrahedron Asymmetry*, **19**, 739–745.

supplementary materials

Acta Cryst. (2009). E65, o1393-o1394 [doi:10.1107/S1600536809017656]

*a***-D-Tagatopyranose**

F. Punzo, D. J. Watkin and G. W. J. Fleet

Comment

Until recently D-tagatose was a rare and expensive hexose; the price in the 2007–2008 Aldrich catalogue was 331.00 pounds sterling for 5 g (Porwell, 2007). It is now available cheaply in large quantities [around 5 pounds sterling per kg] prepared by either chemical (Beadle et al., 1992) or biotechnological (Granstrom et al., 2004; Izumori, 2002) techniques, and it is widely investigated as a low calorie sweetener (Skytte, 2002); the potential of D-tagatose as a chiral building block is also beginning to be recognized (Soengas et al., 2005; Watkin et al., 2005; Jones et al., 2007; Jones et al., 2008; Yoshihara et al., 2008). The crystal structure of another hitherto rare diasteroisomeric ketohexose, D-psicose, has recently been published (Kwiecien et al., 2008). A previous α -D-tagatose structure solution (Takagi et al., 1969), did not report either three-dimensional coordinates or bond lengths and angles. Although in aqueous solution both furanose and pyranose forms are present, only the α -pyranose crystallizes out. The crystal structure of the title compound (Fig. 1) consists of a network of hydrogenbonded chains running parallel to the a axis (Fig.2). Referring to Table 1, O4—H41…O10 is the only intramolecular hydrogen bond detected in the structure. O12-H121...O4 and O1-H11...O6 link the molecules into chains, and O9-H91...O1 and O10—H101...O4 stabilize the structure with inter-chain hydrogen bonds. O4 is involved as an acceptor in two hydrogen bonds and as a donor in an almost linear hydrogen bond - the latter by means of H41. The crystal structure shows three equatorial groups and two axial groups, one of which is an axial anomeric hydroxyl group; this would be expected to be the most thermodynamically stable pyranose anomer. The fairly high value of the anisotropic displacement of O12 - compared to the other C and O atoms - is probably due to thermal motion. It results also in a higher - compared to the other H atoms - isotropic displacement for H121 *i.e.* the hydrogen atom connected to the last atom of the flexible C7—C11—O12 chain.

Experimental

In aqueous solution the major form present is α -D-tagatopyranose (71%) (Fig.1) with 18% of the β -pyranose and small amount of the furanoses (Angyal, 1991). The title compound was recrystallized from a 1:10 mixture of water and acetone allowing the slow competetive evaporation of the solvents, after which, transparent prismatic crystals appeared.

Refinement

The data were collected with molybdenum radiation and since there were no atoms heavier than Si present, there were no measurable anomalous differences and it was admissible to merge Friedel pairs of reflections. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (*DENZO/ SCALEPACK*, Otwinowski & Minor, 1997). The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures	
-	Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
	Fig. 2. Packing diagram of title compound viewed down the <i>a</i> axis. Hydrogen bonds are shown as dotted lines.
	Fig. 3. D-Tagatose and α -D-tagatopyranose.

α -D-Tagatopyranose

$F_{000} = 384$
$D_{\rm x} = 1.675 \ {\rm Mg \ m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 1344 reflections
$\theta = 5 - 32^{\circ}$
$\mu = 0.15 \text{ mm}^{-1}$
T = 190 K
Prism, colourless
$0.50\times0.30\times0.20\ mm$

Data collection

Nonius KappaCCD diffractometer	1351 reflections with $I > 2.0\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.010$
T = 190 K	$\theta_{\text{max}} = 31.5^{\circ}$
ω scans	$\theta_{\min} = 5.6^{\circ}$
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)	$h = -9 \rightarrow 9$
$T_{\min} = 0.96, \ T_{\max} = 0.97$	$k = -9 \rightarrow 9$
2343 measured reflections 1378 independent reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.025$	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.04P)^2 + 0.18P],$ where $P = (\max(F_o^2, 0) + 2F_c^2)/3$
$wR(F^2) = 0.065$	$(\Delta/\sigma)_{\rm max} = 0.0001$
<i>S</i> = 0.97	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$

1378 reflections

Extinction correction: Larson (1970), Equation 22

110 parameters

Primary atom site location: structure-invariant direct Extinction coefficient: 260 (40)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.20580 (13)	0.34108 (12)	0.17994 (4)	0.0157
C2	-0.02883 (15)	0.29006 (15)	0.13171 (5)	0.0113
C3	0.10689 (16)	0.47890 (15)	0.11569 (5)	0.0118
O4	-0.02429 (12)	0.62640 (12)	0.07662 (4)	0.0150
C5	0.29501 (17)	0.41697 (16)	0.06531 (6)	0.0143
O6	0.42202 (12)	0.25811 (12)	0.09985 (4)	0.0139
C7	0.30499 (16)	0.07510 (15)	0.11774 (5)	0.0118
C8	0.11083 (16)	0.12491 (15)	0.16890 (5)	0.0118
O9	0.18387 (14)	0.19838 (12)	0.24031 (4)	0.0171
O10	0.22054 (13)	-0.01458 (12)	0.05105 (4)	0.0142
C11	0.46654 (17)	-0.06848 (16)	0.15537 (6)	0.0155
O12	0.61351 (15)	-0.12797 (16)	0.09805 (5)	0.0271
H21	-0.0851	0.2365	0.0849	0.0134*
H31	0.1585	0.5338	0.1629	0.0151*
H51	0.3943	0.5322	0.0579	0.0174*
H52	0.2364	0.3698	0.0173	0.0181*
H81	0.0263	0.0023	0.1724	0.0147*
H112	0.5375	-0.0021	0.1979	0.0193*
H111	0.3929	-0.1876	0.1738	0.0194*
H41	0.0463	0.7255	0.0642	0.0240*
H91	0.1860	0.0956	0.2678	0.0275*
H121	0.7044	-0.2120	0.1130	0.0413*
H101	0.3225	-0.0416	0.0248	0.0252*
H11	-0.3163	0.3242	0.1565	0.0238*

(A)	Fractional	atomic	coordinates	and	isotropic or	equivalent	isotropic	displacement	parameters	$(Å^2)$
-----	------------	--------	-------------	-----	--------------	------------	-----------	--------------	------------	---------

	.7
Atomic displacement parameters	(A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0103 (3)	0.0192 (4)	0.0177 (3)	-0.0009 (3)	0.0026 (3)	-0.0047 (3)
C2	0.0102 (4)	0.0120 (4)	0.0118 (4)	-0.0005 (4)	0.0005 (3)	-0.0019 (3)
C3	0.0107 (4)	0.0107 (4)	0.0141 (4)	0.0001 (3)	-0.0003 (3)	0.0004 (3)
O4	0.0131 (3)	0.0119 (3)	0.0201 (3)	0.0026 (3)	-0.0007 (3)	0.0027 (3)
C5	0.0125 (4)	0.0121 (4)	0.0183 (4)	0.0022 (4)	0.0034 (4)	0.0041 (3)
O6	0.0097 (3)	0.0111 (3)	0.0209 (3)	-0.0001 (3)	-0.0007 (3)	0.0036 (3)
C7	0.0112 (4)	0.0100 (4)	0.0143 (4)	-0.0003 (4)	-0.0007 (3)	0.0007 (3)
C8	0.0124 (4)	0.0107 (4)	0.0122 (4)	-0.0020 (4)	-0.0001 (3)	-0.0004 (3)
O9	0.0243 (4)	0.0154 (3)	0.0115 (3)	-0.0007 (3)	-0.0033 (3)	0.0001 (3)
O10	0.0138 (3)	0.0151 (3)	0.0137 (3)	0.0009 (3)	0.0005 (3)	-0.0030(3)
C11	0.0136 (4)	0.0139 (4)	0.0191 (4)	0.0026 (4)	-0.0015 (4)	0.0033 (4)
O12	0.0213 (4)	0.0322 (5)	0.0280 (4)	0.0161 (4)	0.0044 (4)	0.0078 (4)

Geometric parameters (Å, °)

O1—C2	1.4309 (12)	O6—C7	1.4303 (12)
O1—H11	0.810	C7—C8	1.5426 (14)
C2—C3	1.5167 (14)	C7—O10	1.4155 (12)
C2—C8	1.5294 (14)	C7—C11	1.5241 (14)
C2—H21	0.963	C8—O9	1.4232 (11)
C3—O4	1.4359 (12)	C8—H81	0.957
C3—C5	1.5241 (14)	O9—H91	0.826
С3—Н31	0.963	O10—H101	0.805
O4—H41	0.810	C11—O12	1.4178 (14)
C5—O6	1.4364 (12)	C11—H112	0.973
С5—Н51	0.980	C11—H111	0.957
С5—Н52	0.972	O12—H121	0.829
C2—O1—H11	108.5	O6—C7—C8	110.68 (8)
O1—C2—C3	110.58 (8)	O6—C7—O10	110.35 (8)
O1—C2—C8	110.13 (8)	C8—C7—O10	106.46 (8)
C3—C2—C8	109.41 (8)	O6—C7—C11	105.69 (8)
O1—C2—H21	108.4	C8—C7—C11	112.92 (8)
C3—C2—H21	109.6	O10—C7—C11	110.81 (8)
C8—C2—H21	108.7	C7—C8—C2	109.91 (8)
C2—C3—O4	108.31 (8)	C7—C8—O9	109.85 (8)
C2—C3—C5	108.81 (8)	C2—C8—O9	109.04 (8)
O4—C3—C5	109.40 (8)	C7—C8—H81	107.0
С2—С3—Н31	108.9	C2C8H81	107.5
O4—C3—H31	111.0	O9—C8—H81	113.5
С5—С3—Н31	110.3	C8—O9—H91	104.7
C3—O4—H41	110.7	C7—O10—H101	106.1
C3—C5—O6	111.36 (8)	C7—C11—O12	106.31 (8)
С3—С5—Н51	111.1	C7—C11—H112	111.4
O6—C5—H51	105.1	O12—C11—H112	112.4
C3—C5—H52	107.7	C7-C11-H111	109.2
O6—C5—H52	110.4	O12—C11—H111	109.3
H51—C5—H52	111.2	H112—C11—H111	108.3
C5—O6—C7	114.34 (8)	C11—O12—H121	113.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O4—H41…O10 ⁱ	0.81	2.02	2.8236 (14)	171
O9—H91…O1 ⁱⁱ	0.83	1.90	2.7203 (14)	173
O12—H121…O4 ⁱⁱⁱ	0.83	2.09	2.7875 (14)	142
O10—H101…O4 ^{iv}	0.81	2.10	2.8518 (14)	155
O1—H11…O6 ^v	0.81	1.96	2.7661 (14)	175
\mathbf{C}_{i}	1 - 1/2 () $1 - 1$	() 1/2	2	

Symmetry codes: (i) x, y+1, z; (ii) -x, y-1/2, -z+1/2; (iii) x+1, y-1, z; (iv) x+1/2, -y+1/2, -z; (v) x-1, y, z.

Fig. 2

Fig. 3

D-tagatose